
Copyright © 2006-2014 Oliver Sturm

Oliver Sturm
olivers@devexpress.com

The advantage of
Immutable Data

Copyright © 2006-2014 Oliver Sturm

Agenda

•  Basics for and against mutability
•  Designing simple and complex

data structures with immutability
in mind

•  Immutability within functions

Copyright © 2006-2014 Oliver Sturm

(Wrong?) Assumptions

 int a = 5;
 int b = 10;
 int c = a + b;

 a = 42;

Okay so far!

Now a is
changed…

This equation is
suddenly wrong

Copyright © 2006-2014 Oliver Sturm

Change is good…

•  That’s a paradigm of imperative
programming

•  State change is regarded as a central idea of
computer programming

•  For some tasks a state-driven algorithm can
be the best solution, especially in imperative
languages

Copyright © 2006-2014 Oliver Sturm

Change is bad…

•  Change creates problems
•  Think about debugging:

– “Why is a suddenly 5?”
•  Change is an enemy of scalability

– Issues with shared data
– Locking & Co. are often used as workarounds

Copyright © 2006-2014 Oliver Sturm

Idea: stop changing things

•  Great idea. But:
•  Change is subjective
•  Scalability requires change
•  Result: Programmers must have a choice of

mutability or immutability, with clear
distinctions and boundaries

Copyright © 2006-2014 Oliver Sturm

Simple steps

•  Regard variables as immutable
•  Declare fields as readonly
•  Instead of changing objects, create new

instances

Copyright © 2006-2014 Oliver Sturm

A mutable class

class Person {
 private string name;
 public string Name {
 get { return name; }
 set { name = value; }
 }
}

Copyright © 2006-2014 Oliver Sturm

An immutable class

class ImmutablePerson {
 private readonly string name;
 public string Name { get { return name; } }

 public ImmutablePerson(string name) {
 this.name = name;
 }

 public ImmutablePerson ChangeName(
 string newName) {
 return new ImmutablePerson(newName);
 }
}

Copyright © 2006-2014 Oliver Sturm

Structs?

•  Structs should be implemented immutably
•  Problem: structs are value types

– Special issues with mutable structs
– Usually inefficient when creating many clones

Copyright © 2006-2014 Oliver Sturm

Demo

Simple types

Copyright © 2006-2014 Oliver Sturm

Isolation/Visibility

•  Scenarios in concurrency
1.  Threads work for themselves
2.  Each thread works on a part of a larger task
3.  Threads must communicate

•  2 and 3 are often exchangeable on the
algorithm level

•  Immutable data types guarantee stability of
data for a particular “context”

Copyright © 2006-2014 Oliver Sturm

Cloning objects is a challenge

•  Using helper functions for object changes
•  But what if there are many fields?
•  … and several different changes?
•  Creating a copy of an object requires some

thought – shallow, deep etc.
•  Creating a copy while making changes is

harder

Copyright © 2006-2014 Oliver Sturm

Demo

Cloning objects

Copyright © 2006-2014 Oliver Sturm

Cloning objects - thoughts

•  F# call syntax – very nice
•  C# call syntax – not so nice

– Type inference isn’t good enough
– No built-in syntax for container types
– Idea: using lambda expressions to specify the

change operations – doesn’t work because fields
are read-only

Copyright © 2006-2014 Oliver Sturm

Cloning objects – more thoughts

•  Assumptions made about implementation of
cloneable types
– Only public read-only fields being used – rather

uncommon, and problematic with things like
data binding

– Constructor takes all the fields as parameters –
unavoidable when using readonly

– Constructor parameter names are equal to field
names

•  The F# mechanism works very similarly, but
automatic

Copyright © 2006-2014 Oliver Sturm

Cloning objects – even more thoughts

•  The mechanism currently takes about 50
times as long as direct construction

•  Optimizations:
– Performance, similar to the accessor caching

already used
– Allow for use of properties, different names, etc,

through intelligent lookup, attributes, etc
– “dynamic”? More usable perhaps, but probably

not faster

Copyright © 2006-2014 Oliver Sturm

And now…

•  What if there’s more than one object?

Copyright © 2006-2014 Oliver Sturm

List types

Global scope
Thread 1

13 2 []5 4

Adding elements

Global scope
Thread 1

13 2 []5 4

Removing element 3

5a 4a

Copyright © 2006-2014 Oliver Sturm

Demo

List types

Copyright © 2006-2014 Oliver Sturm

(FIFO) Queue

Queue

RearFront

4 31 2

One element added, one removed

RearFront

4 32 5

One element removed, one added

RearFront

643 5

Copyright © 2006-2014 Oliver Sturm

Microsoft Immutable Collections

•  Nuget package: Microsoft.Bcl.Immutable
•  Implementation along the same lines as my

own FCSlib
•  Set of immutable data structures available
•  .NET 4.5 required
•  Semantics a bit odd^H^H^Hdifferent

Copyright © 2006-2014 Oliver Sturm

Immutability within functions

•  Reusing variables – not a good idea
•  Iterations in C# usually need mutability
•  Alternatives:

– Recursion – restricted in C#
– Standard higher order functions move the

problem away from your code
– Clean structure

Copyright © 2006-2014 Oliver Sturm

Demo

Immutability within functions

Copyright © 2006-2014 Oliver Sturm

Some things are hard to demo

•  Immutable data is an important step when
trying to avoid side effects

•  General software stability increases together
with the simplicity of testing and debugging

•  Try it yourself, you’ll like it!

Copyright © 2006-2014 Oliver Sturm

Summary

•  For scalability, it is important to
coordinate mutable and immutable data
cleanly

•  Even complex data types can be designed as
immutable

•  C# can do all this, though some help from
the compiler would be nice

 Algorithms for List and Queue are ported
from Chris Okasaki’s book “Purely
functional data structures”

Copyright © 2006-2014 Oliver Sturm

Thank you

Please feel free to contact me about the
content anytime.

olivers@devexpress.com

