The advantage of
Immutable Data

8 DevExpress’

clivers@dor : —D
: ost Valuable
olivers@devexpress.com sliBid Professional




[
/

f

Agenda {4
pgenda o)
J/

 Basics for and against mutability

* Designing simple and complex
data structures with immutability
in mind

« Immutability within functions




(Wrong?) Assumptions

Okay so far!

This equation is
Now a is suddenly wrong
changed...




Change is good...

« That’s a paradigm of imperative
programming

 State change is regarded as a central idea of
computer programming

» For some tasks a state-driven algorithm can
be the best solution, especially in imperative
languages




Change is bad...

* Change creates problems

* Think about debugging:
— “Why is a suddenly 5?”

* Change is an enemy of scalability

— Issues with shared data
— Locking & Co. are often used as workarounds




Idea: stop changing things

* Great idea. But:
* Change is subjective

 Scalability requires change

* Result: Programmers must have a choice of
mutability or immutability, with clear
distinctions and boundaries




Simple steps

» Regard variables as immutable

 Declare fields as readonly

 Instead of changing objects, create new
instances




A mutable class

class Person {
private string name;
public string Name {
get { return name; }
set { name = value; }

}

}




An immutable class

class ImmutablePerson {
private readonly string name;
public string Name { get { return name; } }

public ImmutablePerson(string name) {
this.name = name;

}

public ImmutablePerson ChangeName (
string newName) {
return new ImmutablePerson(newName);

}

}




« Structs should be implemented immutably

* Problem: structs are value types
— Special issues with mutable structs
— Usually inefficient when creating many clones




Simple types




Isolation/Visibility

* Scenarios in concurrency
1. Threads work for themselves
2. Each thread works on a part of a larger task

3. Threads must communicate

« 2 and 3 are often exchangeable on the
algorithm level

« Immutable data types guarantee stability of
data for a particular “context”




Cloning objects is a challenge

 Using helper functions for object changes

* But what if there are many fields?
» ... and several different changes?

 Creating a copy of an object requires some
thought — shallow, deep etc.

 Creating a copy while making changes is
harder




Cloning objects




Cloning objects - thoughts

» F# call syntax — very nice

» C# call syntax — not so nice
— Type inference isn’t good enough
— No built-in syntax for container types

— Idea: using lambda expressions to specify the
change operations — doesn’t work because fields
are read-only




Cloning objects — more thoughts

« Assumptions made about implementation of
cloneable types
— Only public read-only fields being used — rather

uncommon, and problematic with things like
data binding

— Constructor takes all the fields as parameters —
unavoidable when using readonly

— Constructor parameter names are equal to field
names

* The F# mechanism works very similarly, but
automatic




Cloning objects — even more thoughts

» The mechanism currently takes about 50
times as long as direct construction

« Optimizations:
— Performance, similar to the accessor caching
already used

— Allow for use of properties, different names, etc,
through intelligent lookup, attributes, etc

— “dynamic”? More usable perhaps, but probably
not faster




» What if there’s more than one object?




List types

Adding elements

Global scope
Thread 1

5 > 4 3

Removing element 3

Global scope
Thread 1

P> X 3 >




List types




(FIFO) Queue

One element added, one removed

Front Rear

One element removed, one added

Front Rear




Microsoft Immutable Collections

» Nuget package: Microsoft.Bcl.Immutable

Implementation along the same lines as my
own FCSlib

Set of immutable data structures available

NET 4.5 required
Semantics a bit odd"H”H”"Hdifferent




Immutability within functions

» Reusing variables — not a good idea
o Iterations in C# usually need mutability

e Alternatives:
— Recursion — restricted in C#

— Standard higher order functions move the
problem away from your code

— Clean structure




Immutability within functions




Some things are hard to demo

« Immutable data is an important step when
trying to avoid side effects

» General software stability increases together
with the simplicity of testing and debugging

 Try it yourself, you'll like it!




 For scalability, it is important to —
coordinate mutable and immutable data
cleanly

» Even complex data types can be designed as
immutable

» C# can do all this, though some help from
the compiler would be nice

Algorithms for List and Queue are ported
from Chris Okasaki’s book “Purely
functional data structures”




Thank you

Please feel free to contact me about the
content anytime.

olivers@devexpress.com




