Information Rich
Programming with F# 3.0

Microsoft’

MVP Most Valuable
ofession

I al

Contact
oliver@oliversturm.com

Services
http://www.oliversturm.com

Agenda

- The new feature in F# 3.0: Type Providers
- Are we talking about dynamic programming?
- Looking at the standard providers

- Extensibility: (almost) the simplest custom
type provider
- Checking out some custom providers in detail

What's the idea with Information Rich Programming?

Some points MS people like to make:
- Our world is information rich
- ... [skipping a few items here] ...
- Our programming languages are information sparse

In a nutshell;

Programming languages should make it easy
to interact with ever-changing data.

F# Type Providers

- Plugins that supply information

about types

- Type schema is loaded externally
by the plugins

- Plugins interact with the F#
compiler as well as Visual Studio

(Intellisense)

Are we talking about dynamic programming?

- No.
- Not really.
- Type providers assume two things:
- It is possible to define a schema for the data we're
working with
- The schema is widely fixed at compile time, i.e. it
doesn't change at runtime based on application logic
- Type providers are more like automated code generation
tools than dynamic programming in the usual sense
- But: many common and widely appreciated techniques
used in dynamic languages and APIs comply with the
assumptions above

Standard providers supplied with F# 3.0

- SglDataConnection - access database through LINQ to
SQL (SQLMetal)
- DbmlFile - similar to SglDataConnection, but using a
previously created .dbml file
- SglEntityConnection - access database through Entity
Framework
- EdmxFile - similar to SqglEntityConnection, but using a
previously created .edmx file
- Wsdl|Service - access web services that supply WSDL
schema information
- ODataService - access web service through the OData
protocol

Extensibility

- Type providers can be implemented through the two
interfaces ITypeProvider and IProvidedNamespace

- Use attributes [<TypeProvider>] anc
[<TypeProviderAssembly>]

- Implementing the provided types themselves is not
trivial - derive from System.Type

- MS are creating some useful code, but it's not complete
and somewhat restricted

Contact
oliver@oliversturm.com

Services
http://www.oliversturm.com

