
Copyright © 2006-2014 Oliver Sturm

Oliver Sturm
olivers@devexpress.com

Concurrency using functional
patterns in C#

Copyright © 2006-2014 Oliver Sturm

Agenda

•  The many-core shift
•  Concurrency using Parallel

Extensions to .NET
– … and what we still need to do

ourselves
•  Relevant functional approaches
– Black belt list filtering
– The amazing parallel Mandelbrot

Copyright © 2006-2014 Oliver Sturm

The many-core shift is upon us

•  For some weird and highly physical reasons,
single CPU cores don’t get much faster
anymore

•  Instead, we have lots of CPU cores
– Some estimations show that we might have

around 256 (per CPU) within 6 years
– This is true for all types of computers by now,

not restricted to high-perf or server scenarios
•  Result: if programs don’t parallelize, they

use an increasingly small percentage of the
processing power that’s available

Copyright © 2006-2014 Oliver Sturm

Concurrency – really relevant?

•  “Compute intensive tasks” are those that
benefit from concurrency – obviously not all
tasks are in that category

•  But: what percentage of available computing
power do you want to turn down? 50%?
75%? More?

Copyright © 2006-2014 Oliver Sturm

Multi-threading vs. Concurrency vs. Parallelism

•  Things going on on a single core can be
multi-threaded
– Perceived perf gains through “concurrent”

updates
– Hiding latency (network queries, …)

•  Executing things literally concurrently or “in
parallel” means (almost) the same to me

•  Multiple cores come with an opportunity to
benefit from concurrency – this shouldn’t be
missed!

Copyright © 2006-2014 Oliver Sturm

Doing the splits

•  The idea of having lots of processes and just
one processor is old

•  Now things change: several CPUs, more
cores, too few tasks

•  We need to split up large tasks in lots of
chunks
– The more chunks, the better – parallelism

frameworks are more efficient that way

Copyright © 2006-2014 Oliver Sturm

Demo

•  TreeWalker
•  Filtered list in the UI

Copyright © 2006-2014 Oliver Sturm

Data access the way it shouldn’t be

displayPeople
displayCount

ResetDisplayPeople

UpdateUIFilterData

Copyright © 2006-2014 Oliver Sturm

Concurrency frameworks

•  Example: Parallel Extensions to the .NET
Framework

•  Technical hurdles to multi-threading
reduced considerably

•  Data/state sharing somewhat simplified
– Thread-safe data structures
– Advanced mechanisms like software

transactional memory
•  Locking is becoming cheaper, but…

Copyright © 2006-2014 Oliver Sturm

In the end, locks are bad

•  Locks are expensive
– They limit the amount of parallelization we can

use
– They carry a low-level cost

•  They are structurally complicated to work
with

•  Result: the fewer locks we use, the better
•  Algorithms should be structured carefully to

work with data in conflicting ways as rarely
as possible

Copyright © 2006-2014 Oliver Sturm

Functional approaches…

•  … aren’t strictly necessary for concurrency
•  … offer one approach to a code structure

which lends itself well to parallelization
•  … are often used in optimization efforts

without awareness of their origin
•  At the core of FP ideas is function purity
•  … which results – optimally – in the absence

of global data/state

Copyright © 2006-2014 Oliver Sturm

Functional approaches and concurrency

•  There are “only” two approaches that are
really important for concurrency
– Try to work with immutable data
– Try not to have data outside functions

•  This won’t work all the time, so don’t worry
•  It’s harder in imperative languages, because

they don’t enforce the discipline
•  The lack of support for tail recursion is a

problem sometimes

Copyright © 2006-2014 Oliver Sturm

Demo

•  Filtered list in the UI (new and improved
version)

Copyright © 2006-2014 Oliver Sturm

How this demo got better

•  11 fewer lines of code!
•  Okay, seriously:
– Simple functions with just a return or a

statement
– Easy to parallelize, since the algorithm is now

encapsulated in one function
•  But:
– Data is regarded as immutable, but mutable

data structures are still being used
– One class-level field left

Copyright © 2006-2014 Oliver Sturm

Demo

•  Filtered list in the UI (supercharged
functional version)

Copyright © 2006-2014 Oliver Sturm

What happened this time

•  Yeah yeah… another 8 lines saved
•  All functions are pure now
•  Fully functional flow of data, no more

storage outside functions
•  But:
– Event handlers are delegates that use closures,

Windows Forms designer doesn’t have a clue
about this sort of thing

Copyright © 2006-2014 Oliver Sturm

Demo

•  Filtered list in the UI (Black Ninja version)

Copyright © 2006-2014 Oliver Sturm

Parallelization in place

•  “Declarative Data Parallelism” is what
PLINQ provides

•  Changing the source of a LINQ query to
IParallelEnumerable by calling AsParallel()
on an IEnumerable takes care of
concurrency automatically

Copyright © 2006-2014 Oliver Sturm

Demo

•  Drawing Mandelbrot Fractals

Copyright © 2006-2014 Oliver Sturm

Summary

•  Frameworks like the .NET Parallel
Extensions are great

•  … but they don’t do our structural work for
us

•  Functional approaches bring a useful
discipline to the imperative C# language

Copyright © 2006-2014 Oliver Sturm

Thank you

Please feel free to contact me about the
content anytime.

olivers@devexpress.com

